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S1. Data 

 

S1.1 Genomes used in the analyses 

 
1669 prokaryotic genomes were obtained from the NCBI genomes database1, 49 fungal and 80 

metazoan genomes were obtained from the Ensembl genomes database2. In this study, we 

used fully sequenced genomes containing gene locations on the main chromosome and 

plasmids (on prokaryotic organisms) and gene locations on all chromosomes and non-

chromosomal region in eukaryotic organisms.  

 

S1.2 Information about Clusters of Orthologous groups 
 

We used COG (clusters of orthologous groups) and NOG (non-supervised orthologous groups) 

gene families in prokaryotes and their equivalent fuNOG and (meNOG)3 in eukaryotic 

organisms. We assigned genes to which a mapping to COG or NOG was known and used 

COGs and NOGs to assign functions to genes. Unassigned genes can be first compared to 

assigned genes via blast or similar techniques (such as the eggnog mapper4) and can be 

assigned to COG/NOG. Genes not belonging to any existing COG or NOG would need to be 

grouped in newly defined NOGs. Our prokaryotic dataset contained 3475 COG/NOGs, fungi 

dataset contained 15741 fuNOGs and metazoan dataset contained 9185 meNOGs.  

 

 

S1.3 Gene Ontology (GO) 
 

Each COG/NOG was assigned a set of gene functions, herein represented by Gene Ontology 

(GO) terms5. We tested two scenarios: assigning a function to a COG or NOG when 50% of 

genes in a COG/NOG contain this function and assigning a function to a COG or NOG when 

30% of genes in that COG/NOG contain this function. The main conclusions stated in the 

manuscript are supported using both thresholds.  

 

S2. Method 

The depiction of location-based and function-based representations (neighborhood function 

profiles, NFP) is given in Figure S1. 

 

                                                
1 https://www.ncbi.nlm.nih.gov/genome 
2 http://ensemblgenomes.org/ 
3 http://eggnogdb.embl.de/#/app/downloads 
4 http://eggnogdb.embl.de/#/app/emapper 
5 http://geneontology.org/ 
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Figure S1. Location-based approaches are trained on pairwise OG distances of corresponding 

genes contained within genome of different prokaryotic (as demonstrated in this figure) and 

eukaryotic organisms. The obtained distances are used to create a similarity table to train the k-

NN model and the association network to train the Gaussian Field Propagation (GFP) approach. 

Functional Neighborhoods are used to create a normalized frequency matrix which is used to 

train the Random Forest of Predictive Clustering trees model. In all experiments on bacterial 

organisms, we use a Neighborhood of 2 genes on each side of a targeted gene. 

 

To measure the strength of association between different pairs of GO functions from our data, 

we first computed the contingency tables that contain the following components: 

 

Table S1. Contingency tables used to assess associations between pairs of functions GOx and 

GOy.  

 Neighborhood contains GOy Neighborhood does not 
contain GOy 

OG contains GOx a b 

OG does not contain GOx c d 

 

From these tables, we compute the Odds ratio OR = 
𝑎/𝑐

𝑏/𝑑
 and the Log Odds Ratio 𝑙𝑜𝑔2(𝑂𝑅). In 

addition to computing ORs and log odds ratios and testing its statistical significance using the 

Fisher exact test (for ORs) and  z-test for𝑙𝑜𝑔2(𝑂𝑅) > 0. We also provide empirical evidence of 

strength of association. This is done by computing the number (percentage) of significantly 



enriched pairs of functions computed on the original dataset with higher or significantly higher 

(2x or more) 𝑙𝑜𝑔2(𝑂𝑅) than the corresponding pair computed on the randomized dataset (gene 

locations are permuted in the genome).  

 

For a given mapping 𝜁: 𝛴 → 𝑃( 𝛺) that maps a GO function to a set of OGs, which contain this 

function, we use 𝐽(𝐺𝑂𝑥, 𝐺𝑂𝑦)  =  
|𝜁(𝐺𝑂𝑥) ∩ 𝜁(𝐺𝑂𝑦)|

|𝜁(𝐺𝑂𝑥 ∪ 𝐺𝑂𝑦)|
 to measure the level of circularity of pairs of 

functions (especially these from different namespaces of GO ontology). 

 

The experiments of assessing the influence of distant and enriched functions to the predictive 

performance of the NFP methodology, as described in section “High predictive power of the 

Neighborhood Function Profile (NFP) classifier” of the main manuscript were performed in the 

following manner:  

 

a) Features were divided into several categories (detailed description available in Section 

S3.6, “Predicting gene function from genomic neighborhoods can be greatly improved by 

taking semantically dissimilar functions into account “). 
b) To avoid positive bias introduced with a feature selection procedure (especially in case 

of sets of attributes containing semantically close functions - CLPar and CL categories), 

we added a number of randomly generated attributes, so that the total number of 

attributes equals the overall number of attributes used in the experiment (|BPP|). These 

attributes were generated using randomly generated numbers from uniform distribution 

in the interval [𝐴𝑡𝑚𝑖𝑛, 𝐴𝑡𝑚𝑎𝑥].  

c) The increase of predictive power of using one set of attributes over CLPar - usually used 

in guilt-by-association approaches, demonstrates the added benefit of enriched and 

semantically distant functions for gene function prediction using NFP methodology.  

 

S3. Experiments 

S3.1 Log Odds Ratio analyses 

 

We computed Odds Ratio [Cornfield] and Logs Odds Ratio for all pairs of 1048 GO functions 

associated with OGs in bacterial genomes. Odds Ratios for pairs of functions (𝐺𝑂𝑥 , 𝐺𝑂𝑦) were 

computed from gene functional Neighborhoods and they represent the odds of a function 𝐺𝑂𝑦  

occurring in a Neighborhood of a gene containing some function 𝐺𝑂𝑥. The selected subset of 

these functions, containing only GO functions from Biological Process ontology and a 

prokaryotic subset6  contains 478 different GO functions. The resulting Log Odds Ratios for all 

pairs of these 478 functions, clustered by log odds ratio (Figure S2) and Resnik semantic 

similarity [Resnik] (Figure S3) show existence of several clusters of highly associated functions.   

 

Moreover, it can be seen from the heatmap shown in Figure S3 that there exist many pairs of 

highly associated functions that are semantically dissimilar (those far away from the heatmap’s 

                                                
6 http://www.geneontology.org/page/go-subset-guide 



diagonal). It can be also seen that there is a significant amount of highly associated pairs of 

functions (those with logOR > 1).  

 

 

 
Figure S2. Heatmap of pairwise GO function Log Odds Ratios, derived from prokaryotic 

genomes. Heatmap rows and columns have been clustered by Log Odds Ratio. White color 

denotes insignificant associations (p-value > 0.05). 

 

 



  
Figure S3. Heatmap of pairwise GO term log odds ratios (OR), quantifying enrichments in 

genomic neighbohoods of prokaryotic genomes. Rows and columns have been clustered by GO 

semantic similarity. White color denotes non-significant associations (p > 0.05). 

 

Figure S4. Heatmap of pairwise GO term log odds ratios (OR), quantifying enrichments in 

genomic neighbohoods of prokaryotic genomes. Rows and columns have been clustered by log 

OR profiles. White color denotes non-significant associations (p > 0.05). 



 
Figure S5. Heatmap of pairwise GO term semantic similarities, for GO terms arranged as in 

previous figure (clustered by log OR profiles in prokaryotic genomes). White color denotes non-

significant associations (p > 0.05). 

 

 

Figures S4 and S5 show that clusters of semantically close functions (denoted in yellow in 

Figure S5) are mostly significantly enlarged when looking at Log Odds Ratios in Figure S4. This 

means that there exist a high number of pairs, of semantically dissimilar functions, that are 

highly enriched in functional Neighborhoods.  

 

Similar thing can be seen from Figures S2 and S3, where many clusters occurring in Figure S3 

are significantly smaller than these from Figure S3, which shows that semantically dissimilar 

functions must be a part of clusters containing highly enriched pairs of functions (these with 

logOR>0). 

 

In the continuation, we present several GO functions that have highly enriched dissimilar 

function in their functional Neighborhood (for all selected pairs see Supplementary document 5). 

For each pair of enriched, dissimilar functions, we report:  

a) The Log Odds Ratio of occurrence of a selected function GO in its own Neighborhood.  

b) The Log Odds Ratio of occurrence of a dissimilar function GO in the functional Neighborhood 

of a function GO.  

c) The statistical significance of the enrichment, computed by Fishers exact test [Fisher]. 

d) Resnik Semantic Similarity [Resnik] 

e) The Jaccard index [Jaccard] of occurrence of these GO terms in OGs present in the dataset. 

 

 

 



Table S2. Selected subset of highly enriched pairs of GO functions with corresponding Log 

Odds Ratio along with the corresponding confidence interval, statistical significance of 

association, semantic distance and the corresponding Jaccard index computed on function co-

occurrence in different COGs from our prokaryotic data set. 

GOs Description LOR 
GOs-
GOs 

GOm Description LOR 
GOs-
GOm 

p Res. 
Sem. 
Simil. 

J Jrand 

GO0005975 carbohydrate 
metabolic 
process 

2.53∓

0.01 

 
GO0008643 

carbohydrate 
transport 

2.12∓ 

0.02 

0.0 0.0 0.0 0.004 

GO0006260 DNA 
replication 

2.99∓ 

0.02 

GO0032506 cytokinetic 
process 

1.41∓ 

0.06 

0.0 0.787 0.0 0.0 

GO0006974 cellular 
response to 
DNA damage 
stimulus 

2.39∓ 

0.02 

GO0006265 DNA 
topological 
change 

1.42∓ 

0.06  

0.0 0.787 0.0 0.0 

GO0006974 cellular 
response to 
DNA damage 
stimulus 

2.39∓ 

0.02 

GO0033866 nucleoside 
bisphosphate 
biosynthetic 
process 

1.41 ∓ 

0.05 

0.0 0.787 0.0 0.0 

GO0016051 carbohydrate 
biosynthetic 
process 

4.16∓ 

0.02 

GO0043163 cell envelope 
organization 

2.1∓ 

0.07 

0.0 0.0 0.0 0.0 

GO0006457  protein folding 5.41∓ 

0.02 

GO0016226 iron-sulfur 
cluster 
assembly 

1.91∓ 

0.08 

0.0 0.521 0.0 0.0 

GO0046700 heterocycle 
catabolic 
process 

1.15∓ 

0.01 

GO0051180 vitamin 
transport 

1.65∓ 

0.08 

0.0 0.01 0.01 0.0 

GO0006310  DNA 
recombination 

3.09∓ 

0.02 

GO0006952 defense 
response 

1.02∓ 

0.13 

0.0 0.0 0.0 0.0 

GO0046903 secretion 6.56∓ 

0.03 

 
GO0006935 

chemotaxis 3.6∓ 

0.05 

0.0 0.0 0.0 0.0 

GO0008610  lipid 
biosynthetic 
process 

3.21∓ 

0.02 

GO0051668 localization 
within 
membrane 

2.43∓ 

0.05 

0.0 0.0 0.0 0.0 

GO0006865 amino acid 
transport 

2.32∓

0.04 

 

GO0009310 amine 
catabolic 
process 

2.17∓ 

0.13 

0.0 0.0 0.0 0.0 

GO0006508  proteolysis 1.80 ∓ GO0019682 glyceraldehyd
e-3-

1.48∓ 0.0 0.95 0.0 0.0 



0.02 phosphate 
metabolic 
process 

0.05 

 

For each selected function GO term, we plot a histogram, showing the frequencies of Log Odds 

Ratios of the distant, medium-distant functions as well as all immediate parents of a selected 

GO term (denoted CLPar). Histograms can be seen in Figures S6. 

 

 
Figure S6. Histograms showing Log Odds Ratio frequency of GO functions and a selected GO 

function divided by semantic similarity to CLPar (selected function + all parent functions in GO 

Ontology), CLMed (functions with Resnik semantic similarity > 2  with the selected function) and 

Dist (functions with Resnik semantic similarity ≤2 with the selected function). 

 

Histogram presented in Figure S7 displays: 

a) Frequencies of Log Odds Ratios of distant and close functions. 

b) Statistical significance of Log Odds Ratio of occurrence of function GOy in the functional 

Neighborhood of function GOx to be greater than zero. 

c) Statistical significance of Log Odds Ratio of occurrence of function GOy in the functional 

Neighborhood of function GOx to be larger than the Log Odds Ratio of GOx occurrence 

in its own functional Neighborhood. 



 
Figure S7. Red color denotes the frequency of semantically close functions to the selected GO 

category, green color denotes semantically distant functions, blue color denotes frequencies of 

functions with significant logOR>0 (second column) and logOR(GOy, GOx) > logOR (GOx, 

GOx), in the third column. Purple color denotes the frequency of insignificant categories. In this 

consideration, we only test the significance of enrichments, thus all pairs with depletions are 

deemed insignificant.  Intervals not present in the bar plot have 0 frequency.   

 



 
Figure S8. Comparative histograms showing log odds ratios (LogOR) computed on the original 

prokaryotic genomes (blue) and in randomized versions of these genomes (green). 

 

Finally, we present the comparative histograms showing distributions of Log Odds Ratios of all 

pairs of functions, contained in our dataset from the Biological Process Ontology and contained 

in the Prokaryotic subset, in the original and randomized versions of bacterial genomes.  In the 

randomized version, we randomly permuted gene locations, keeping gene to OG mapping 

intact.  Histograms presented in Figure S8. demonstrate that there is a significant difference (as 

computed by the two-sided Mann-Whitney U-test)  in Log Odds Ratio distribution computed 

from the original bacterial genomes compared to those computed on the randomized version of 

the genome. 

 

In the continuation, we present a Scatter plot for two selected GO functions and their enriched 

GO pair (presented in Table S2) to analyze the percentage of Neighborhoods, of different 

COGs, containing each of these functions. We compare this with percentages of Neighborhoods 

containing each of the selected functions on a randomly permuted genome as a baseline 

comparison for the same set of COGs (denoted in red). 



Figure S9. Scatter plot showing the average percentage of gene functional neighborhood of 

different COGs that contain GO function GO0005975 (x-axis) and GO0008643 (y-axis).  



 
Figure S10. Scatter plot showing the average percentage of gene functional neighborhood of 

different COGs that contain GO function GO0006457 (x-axis) and GO00016226 (y-axis). 

 

The scatter plots in Figures S9 and S10 arrange COGs by the average percentage of their 

Neighborhood containing functions GO0005975, GO0008643 (Figure S9) and GO0006457, 

GO00016226 (Figure S10). COGs whose Neighborhoods contain ≥4% of both GO functions (in 

average) are pointed out along with their description. 

 

Enrichments in Eukaryotes 

Similarly as in prokaryotes, the distributions of enrichments on original dataset are significantly 

different from the enrichment distributions obtained on the randomized dataset. 

 



 
Figure S11. Histograms display significant difference in distribution of Log Odds Ratios on 

original and randomized dataset on Fungi,for all groups of functions.  

 

 
Figure S12. Histograms display significant difference in distribution of Log Odds Ratios on 

original and randomized dataset, on Metazoa, for all groups of functions.  

 



We can see the increased left tail of the original log odds ratio distribution. We show that this is 

the result of insignificant contingency tables (these having 0 GO co-occurrences or high 

imbalance of occurence between a pair of GO functions).  This is demonstrated by showing 

comparative plots of the log odds ratio distribution of all pairs of GO functions and a distribution 

of pairs of functions having significant contingency tables (as computed by the Fisher’s exact 

test). These can be seen in Figure S13. for Fungi organisms and Figure S14. for Metazoa 

organisms.  

 

 

 
Figure S13. Distribution plots for all pairs of GO function and all pairs having significant 

contingency tables on Fungi.   

 
Figure S14. Distribution plots for all pairs of GO functions and all pairs having significant 

contingency tables on Metazoa. 

 

Across eukaryotes, 35.1% of the analyzed GO terms are significantly enriched in their own 

neighborhoods across 49 fungal genomes, and 99.1% of GO terms across 80 metazoan 

genomes. 17.7% of functions are significant and at least two-fold enriched in their own 

neighbourhood in Fungi, and this is the case for 99.1% of the gene functions in Metazoa. 

Empirical assessment of association strength of enrichments  

To empirically assess if the strength of association is significantly higher in original 

dataset than in randomized data (gene locations are permuted in a genome), we: 

a) Computed the log odds ratio on randomized data for each significantly enriched 

pair on the original data. 



b)  Assessed the number of pairs with higher 𝑙𝑜𝑔2(𝑂𝑅) than the corresponding pair 

computed on the randomized genome. 

c)  Assessed the number of pairs with two-fold increase in 𝑙𝑜𝑔2(𝑂𝑅) compared to the 

corresponding pair computed on the randomized genome.  

 

This criterion is used, because it is not computationally feasible to calculate all log odds 

ratios on different randomized versions of a genome the number of times required to 

assess empirical p-values.  

 

The number of pairs with higher or significantly higher 𝑙𝑜𝑔2(𝑂𝑅) than obtained by the 

corresponding pair on randomized genome for different scenarios and FDR thresholds are 

presented in Table S3.  

 

Table S3. Percentage of significant pairs with a given criteria with larger or significantly larger 

log odds ratio than corresponding pair computed on randomized data. 

Criteria #GOx-GOy 
pairs 

%pairs 
𝑙𝑜𝑔2(𝑂𝑅𝑜𝑟𝑖𝑔)  >  

 
      𝑙𝑜𝑔2(𝑂𝑅𝑟𝑎𝑛𝑑)  

%pairs 
𝑙𝑜𝑔2(𝑂𝑅𝑜𝑟𝑖𝑔)  >  

       
2 ⋅ 𝑙𝑜𝑔2(𝑂𝑅𝑟𝑎𝑛𝑑)  

Organisms 

 
GOx-GOx, ORx>1 at 
FDR<20%; Z-test for 

significance of log odds 
ratio  

854/1048 100% 99.2% Prokaryotes 

918/2617 97.9% 80% Fungi 

2316/2316 100% 99.8% Metazoa 

 
GOx-GOy, ORx>1 at 
FDR<20%; Z-test for 

significance of log odds 
ratio 

2.9x105/ 

1.1x106 

98.7% 94.3% Prokaryotes 

1.0x106/ 

6.8x106 

94.2% 62.2% Fungi 

1.6x106/ 

5.4x106 

99.8% 95.7% Metazoa 

GOx-GOy, ORx>1 at 
FDR<10%; Z-test for 

significance of log odds 
ratio and Resnik Similarity 

< 1 
 

4.6x104/ 

1.8x105  

98.7% 94.1% Prokaryotes 

GOx-GOy, ORx>1 at 
FDR<10%; Z-test for 

significance of log odds 
ratio and Resnik Similarity 

< 2 

3.1x105/ 

1.8x106 

93.1% 58.7% Fungi 

3.8x105/ 

1.3x106 

99.8% 95.4% Metazoa 

GOx-GOy, ORx>2 at 16356/177843 100% 99.85% Prokaryotes 



FDR<10%; Z-test for 
significance of log odds 

ratio and Resnik Similarity 
< 1 

 

GOx-GOy, ORx>2 at 
FDR<10%; Z-test for 

significance of log odds 
ratio and Resnik Similarity 

< 2 

69466/331277 99.7% 85.6% Fungi 

226876/467656 99.96% 96.8% Metazoa 

 
GOx-GOx or GOx-GOy 

with Resnik Similarity ≥6. 
ORx>1 and 

J(GOx,GOy)≥0.6  at 
FDR<1%; Z-test for 

significance of log odds 
ratio  

6615 99.8% 97.8% Prokaryotes 

8853 97.3% 74.4% Fungi 

36122 99.9% 97.6% Metazoa 

GOx-GOy with Resnik 
Similarity  

<1 and J(GOx,GOy)≤
0.05. ORx>1 and 

FDR<1%; Z-test for 
significance of log odds 

ratio  

204202 98.5% 94.1% Prokaryotes 

GOx-GOy with Resnik 
Similarity  

<2 and J(GOx,GOy)≤
0.05. ORx>1 and 

FDR<1%; Z-test for 
significance of log odds 

ratio  

878850 94% 61.4% Fungi 

1256151 98.8% 95.5% Metazoa 

 

Correlation between Jaccard index and Log odds ratio of pairs of functions 

In this section, we demonstrate that there is only a partial correlation between the Jaccard index 

and the Log Odds Ratio for significantly enriched GO pairs of functions (FDR<0.1).  

92% of functions presented in the plot have Jaccard index smaller than 0.1, but still have 

significant enrichment. This indicates that the effect of semantically distant, enriched functions is 

relevant and frequently occurring.  

 



 
Figure S15. Correlation between Log Odds Ratio and Jaccard index for all significantly enriched 

GO pairs of functions with FDR<0.1.  

 

S3.2 Evaluation of prediction accuracy of Neighborhood function profiles on 

prokaryotic genomes 

 

In this subsection, we present the comparative histograms showing the number of GO functions 

with a AUC or AUPRC (Figure S16) in the predefined interval for the 10-NN (red) and 

Neighborhood function profiles (green) methods. The frequency distribution is significantly 

shifted to the right for the NFP approach in all figures for AUC and AUPRC measures 

demonstrating significant improvement in accuracy of gene function prediction regardless 

generality of GO function. GO functions were divided to specific functions (information content ≥  

4) and general (information content <4). 



 
Figure S16. Comparative histograms showing number of GO functions with a given AUC (first 

three subfigures) and the number of GO functions with a given AUPRC (second three 

subfigures) for Neighborhood function profiles (green) and 10-NN (red) approach.  

 

The comparative results for 1-NN, 3-NN, 10-NN, Gaussian Field Propagation [Mostafavi] and 

Neighborhood function profiles approach can be seen in Figure S17. 

 



 
Figure S17. Distribution of AUC (top) and AUPRC (bottom) values achieved by different 

approaches on prokaryotic dataset. 

 

We compare the AUC and AUPRC for the same set of functions using Bubble plots [Vidulin] for 

1-NN, 3-NN, 10-NN, Gaussian Field Propagation [Mostafavi] and Neighborhood function profiles 

methods. Each bubble represents one GO term and the size of a bubble denotes GO generality. 

More general terms (with higher frequency) are denoted with larger bubbles whereas more 

specific terms with smaller bubbles. GO terms with frequency larger than 0.3*maxGenerality 

(very general terms) are not shown to make figures more visible. Boxplots represent 



AUC/AUPRC distribution for general terms (frequency >0.2), medium general terms (frequency 

in [0.1, 0.2>) and specific terms (frequency <0.1). GO terms are further divided by different 

ontology namespaces to Biological process, Cellular component and Molecular function. 

 

Figure S18 demonstrates that Neighborhood function profiles methodology significantly 

outperforms other methods with respect to AUC score on all three ontology namespaces and on 

GO terms contained in all three generality levels. Neighborhood function profiles methodology 

also outperforms all methods with respect to AUPRC score on Biological process namespace 

on all generality levels, whereas it has slightly worse accuracy then Gaussian Field Propagation 

method on the specific functions on the Cellular component namespace (however, this ontology 

contains a very small number of functions making results highly unstable). The Gene Functional 

Neighborhood methodology outperforms other methods on medium general and general 

categories. 

 

 
Figure S18. Accuracy comparison of 1-NN, 3-NN, 10-NN, Gaussian Field Propagation and 

Neighborhood function profiles methodologies for gene function prediction. Cross-validation 

AUC (left column) and AUPRC (right column) scores are shown for functions of different 

generality (bubble size) and GO sub-ontologies (rows). 

 

 



S3.3 Evaluation of prediction accuracy of Neighborhood function profiles on 

fungal genomes 

 

Comparison with baseline methods (Gaussian Field Propagation and k-NN approach)  

was performed on 49 Fungi genomes obtained from the Eggnog database [Cepas].  

Histogram comparing number of GO functions with AUC/AUPRC in a predefined 

interval achieved by Neighborhood function profiles and 10-NN method are available in 

Figure S19.  

 

 

  
Figure S19. Comparative histograms showing number of GO functions with a given AUC (first three 

subfigures) and the number of GO functions with a given AUPRC (second three subfigures) for 

Neighborhood function profiles (green) and 10-NN (red) approach on the Fungi genomes. 

 



Figure S19 demonstrates that Neighborhood function profiles methodology has significantly 

shifted (higher) values of AUC score on all groups of tested function, strongly shifter values of 

AUPRC score on general function and visibly shifted score on all and specific functions. The 

distribution of AUC/AUPRC scores for different approaches on fungi dataset can be seen in 

Figure S20.  

 

 
Figure S20. Distribution of AUC (top) and AUPRC (bottom) scores achieved by different approaches on 

the Fungi dataset. 

 

It can be seen in Figure S20 that neighborhood function profiles method outperforms 

baseline methods on all ontologies with respect to AUC and AUPRC measures for 

categories contained in all three defined generality classes.  Figure S21 shows that 

Neighborhood function profiles outperform other approaches on Fungi organisms on 

both the AUC and AUPRC measures for all namespaces of GO ontology and GO 

generality levels. 

 



 

 

 
 

Figure S21. AUC (left) and AUPRC (right) distribution for GO categories of different generality 

(bubble size) belonging to different GO sub-ontologies (rows) for Neighborhood function profiles 

and Gaussian Field Propagation versus baseline methods on Fungi genomes. 

S3.4 Evaluation of prediction accuracy of Neighborhood function profiles on 

metazoan genomes 

 

We compare the Neighborhood function profiles with Gaussian Field Propagation and 

baseline k-NN methods on 80 Metazoa genomes. 

Histogram comparing number of GO functions with AUC/AUPRC in a predefined 

interval achieved by Neighborhood function and 10-NN method are available in Figure 

S22.  

 



 
Figure S22. Comparative histograms showing number of GO functions with a given AUC (first 

three subfigures) and the number of GO functions with a given AUPRC (second three 

subfigures) for Neighborhood function profiles (green) and 10-NN (red) approach on the 

Metazoa genomes. 

 

Comparison of 1-NN, 3-NN, 10-NN, GFP and NFP approaches on all functions used for 

gene function prediction on metazoa organisms can be seen in Figure S23. 

 



 
Figure S23. Method comparison based on AUC score(top) and AUPRC (bottom).   

 

Method comparison, based on AUC/AUPRC score, divided in different namespaces of 

GO ontology is presented in Figure S24. 



 
Figure S24. AUC (left column) and AUPRC (right column) distribution for accuracy of 

predicting GO terms with different generality (bubble size) and belonging to different GO 

sub-ontologies (rows) for the Neighborhod Function Profiles (NFP) versus baseline 

methods on Metazoa genomes. 

 

It can be seen in Figure S24 that Neighborhood function profiles outperforms baseline 

methods on all ontologies with respect to AUC and AUPRC measures for categories 

contained in all three defined generality classes.  

 

S3.5 Ru-Mi curves on prokaryotic dataset 

Ru-Mi curves measure remaining uncertainty and an amount of misinformation obtained 

from predictions produced by a classification algorithm [Clark et al, 2013]. The remaining 

uncertainty corresponds to the information about the protein function that is not provided by the 

prediction, i.e. graph P, in relation to the true subgraph of functions T. The remaining uncertainty 

(ru) is defined as: 



𝑟𝑢(𝑇, 𝑃) = ∑ 𝑖𝑎(𝑛)

𝑛∈𝑇−𝑃

 

 

This is simply the total information content of the nodes in T of the GO, but not in the P. The 

misinformation introduced by some prediction corresponds to the total information content of the 

nodes of GO in prediction subgraph P, which are not matching those in a true subgraph T. 

 

𝑚𝑖(𝑇, 𝑃) = ∑ 𝑖𝑎(𝑛)

𝑛∈𝑃−𝑇

 

 

 
Figure S25. Ru-Mi curves for 10-NN, Gaussian Field Propagation (GFP) and 

Neighborhood Function Profiles (NFP) approach.  

 

 

It can be seen in Figure S25 that the NFP approach exhibits the smallest amount of 

misinformation given a remaining uncertainty threshold among the tested approaches.  

 

Ru-Mi curves on Eukaryotic datasets 

We show Ru-Mi curves obtained in Fungi and Metazoa dataset in Figure S26. We can see that 

NFP approach outperforms other approaches on both datasets with respect to amount of 

misinformation given some uncertainty threshold.  

 



 
Figure S26. Ru-Mi curves for 10-NN, Gaussian Field Propagation and Neighborhood 

function profiles approach on Fungi dataset (top) and Metazoa dataset (bottom). 

 

 

 



Classifier performance for different numbers of neighbours 

 

a) prokaryotes 

 
b) fungi 

 
c) metazoa 

 
 

Figure S27. Average AUC (left) and  AUPRC (right) on the dataset obtained from Prokaryotic 

organisms a) for Neighborhood function profiles (NFP), Gaussian Field Propagation (GFP) and 

k-NN approach.  

 

 

Figure S27 a) demonstrates that NFP approach reaches maximal average AUPRC for k=3 

(using 3 neighbouring genes to compute functional Neighborhoods). k-NN approach average 

AUPRC rises until k=7 and then slowly declines. AUC generally shows similar behaviour for 

NFP, however it increases constantly for the k-NN approach.  

 



Since k-NN approach searches for OGs that are the nearest neighbours across all genomes 

(globally), increasing parameter k, leads to more stable predictions since many similar 

neighbours reinforce the prediction of conserved function. Neighborhood function profiles 

approach works on a different principle, looking at functional Neighborhoods in local (physical) 

environment of a gene. Increasing the parameter k (up to k=3) increases performance, however 

further increase slowly decreases AUPRC score. This is the consequence of increased noise 

when adding genes that are far apart in the genome (more than 3 genes apart) from a central 

gene. Such genes may contain increasing number of functions unrelated to the central gene.  

 

The GFP approach has decreasing AUPRC score from k=2 onwards, however it has increasing 

AUC score.  Given the presented results, we present all detailed result analyses for k=5 (since it 

shows good trade-off in performance for both AUC and AUPRC score).  

 

Genomes of eukaryotic organisms are bigger and different in structure (linear) compared to 

circular prokaryotic genomes. Here we use k=10 for the k-NN and the GFP algorithms7 and k=5 

for the NFP algorithm.  In Fungi organisms, the chosen parameters yield the best performance.  

The k-NN approach reaches the peak performance at k=20 for Metazoa organisms, although 

the difference compared to k=10 is very small. NFP approach has slightly increasing 

performance with the increase of parameter k. It has a peek at k=5 with respect to AUC score 

(see Figure S27 b) and c)). 

 

Classifier performance for selected functions having high enrichment with 

at least one dissimilar function 

 

 

Figure S28. AUC (left) and AUPRC (right) for 11 selected functions predicted by 1-NN, 

3-NN and 10-NN algorithms (red), Gaussian Field Propagation (blue) and Neighborhood 

function profiles (green) method. 

 

                                                
7 GFP approach has a very long execution time on eukaryotic datasets, making Greedy search approach 

for parameter testing infeasible. It has been determined that k=10 has better performance than k=5. For 
k-NN approach k=10 yields favorable performance (k=20 yields only slightly better performance on 
Metazoa organisms).  



Figure S28 shows that Neighborhood function profiles and Gaussian Field Propagation methods 

significantly outperform baseline methods (k-NN) on selected functions (functions having highly 

enriched semantically distant functions). Moreover, NFP significantly outperform Gaussian Field 

Propagation method in both AUC and AUPRC measures. This figure demonstrates that NFP 

can use enrichments even though they are present between semantically dissimilar functions 

and uses this information to improve gene function prediction. 

 

S3.6 Predicting gene function from genomic neighborhoods can be greatly 

improved by taking semantically dissimilar functions into account    

 
In this section, we study the effects of using semantically dissimilar functions in gene function 

prediction, using Gene Functional Neighborhood approach. To do this, we perform 200 runs of 

cross-validation for each GO category using single class prediction with Fast Random Forest 

algorithm8. In these experiments, we use only GO categories from the Biological Process 

namespace. We test classifier performance using different subsets of features: a) All features 

from Biological Process namespace, b) All features corresponding to the occurence of 

semantically close functions to the target GO in the Neighborhood of a target GO, c) All features 

corresponding to the occurence of semantically close functions to the target GO in the 

Neighborhood of a target GO but not containing target GO and its parents, d) All features 

corresponding to the occurence of semantically close functions to the target GO in the 

Neighborhood of a target GO but not containing target GO, its parents and highly enriched GO 

terms to the target GO, e) All features corresponding to the occurence of medium distant 

functions to the target GO in the Neighborhood of a target GO, f) All features corresponding to 

the occurence of medium distant functions to the target GO in the Neighborhood of a target GO  

not containing parents of the target GO, g) All features corresponding to the occurence of 

medium distant functions to the target GO in the Neighborhood of a target GO not containing 

parents of the target GO or any enriched GO function occurring in the Neighborhood of target 

GO, h) All features corresponding to the occurrence of semantically distant functions to the 

target GO in the Neighborhood of a target GO, i)  All features corresponding to the occurrence 

of semantically distant functions to the target GO in the Neighborhood of a target GO  not 

containing parents of the target GO, j) All features corresponding to the occurrence of 

semantically distant functions to the target GO in the Neighborhood of a target GO  not 

containing parents of the target GO or any enriched GO function in the Neighborhood of a target 

GO, k) All features corresponding to the occurrence of a target GO function and its parents in 

the Neighborhood of a target GO. 

 

                                                
8 https://github.com/GenomeDataScience/FastRandomForest 



 
Figure S29. The effects of removing enriched functions from feature set for a selected subsets 

of features and comparison to CLPar set of features (containing the selected function and its 

parents, which closely mimics information obtainable by the guilt-by-association approaches). 

Barplots show the AUPRC value obtained by the Fast Random Forest method trained on a 

selected subset of features, whereas error bars show standard deviation among 200 runs of 

cross-validation. 

 

We can see from Figure S29. that for the selected set of functions (these containing highly 

enriched dissimilar functions in the Neighborhood) occurrence of highly enriched functions in the 

Neighborhood play important role in predictive accuracy of Neighborhood function profiles 

method. Moreover, for all but one function, the approach manages to achieve better 

performance learning from features representing occurrence of highly enriched semantically 

distant functions than from Neighborhoods representing occurrence of the target function and its 

parents.  

 

The amount of new information obtained with proposed methodology 

 

In this section, we measure the amount of information obtained from predictions of 

Neighborhood function profiles method (first diagram) by computing the information accretion 

[Clark]. We compare the amount of information obtained with other state-of-the art methods 

(Gaussian Field Propagation - second diagram and k-NN - third diagram). 

 



 
 

Figure S30. Average information accretion (bits per gene) obtained with Neighborhood function 

profiles approach (top-left), Gaussian Field Propagation (top-right) and 10-NN (bottom-center) 

on prokaryotic dataset. The diagram shows the average number of bits per gene contained in 

known annotations that were not obtained by the classifier with precision >=0.5, average 

number of bits  per gene contained in known annotations obtained with the used methodology 

and the average number of bits per gene of newly obtained information (previously unknown). 

 

 

 
 

Figure S31. Average information accretion (bits per gene) obtained with Neighborhood function 

profiles approach (top-left), Gaussian Field Propagation (top-right) and 10-NN (bottom-center) 

on prokaryotic dataset. The diagram shows the average number of bits per gene contained in 

known annotations that were not obtained by the classifier with precision >=0.8, average 

number of bits  per gene contained in known annotations obtained with the used methodology 

and the average number of bits per gene of newly obtained information (previously unknown). 

 

On eukaryotic datasets all methodologies produce significantly smaller number of bits of 

information per gene, however it is evident that NFP approach significantly outperforms 

other tested approaches. 



 

 
Figure S32. Average information accretion (bits per gene) obtained with Neighborhood function 

profile approach (top-left), Gaussian Field Propagation (top-right) and 10-NN (bottom-center) on 

fungi dataset. The diagram shows the average number of bits per gene contained in known 

annotations that were not obtained by the classifier with precision >=0.5, average number of bits  

per gene contained in known annotations obtained with the used methodology and the average 

number of bits per gene of newly obtained information (previously unknown). 

 

 
Figure S33. Average information accretion (bits per gene) obtained with Neighborhood function 

profiles approach (top-left), Gaussian Field Propagation (top-right) and 10-NN (bottom-center) 

on fungi dataset. The diagram shows the average number of bits per gene contained in known 

annotations that were not obtained by the classifier with precision >=0.8, average number of bits  

per gene contained in known annotations obtained with the used methodology and the average 

number of bits per gene of newly obtained information (previously unknown). 

 

 



 
Figure S34. Average information accretion (bits per gene) obtained with Neighborhood function 

profiles approach (top-left), Gaussian Field Propagation (top-right) and 10-NN (bottom-center) 

on metazoa dataset. The diagram shows the average number of bits per gene contained in 

known annotations that were not obtained by the classifier with precision >=0.5, average 

number of bits  per gene contained in known annotations obtained with the used methodology 

and the average number of bits per gene of newly obtained information (previously unknown). 

 

 
Figure S35. Average information accretion (bits per gene) obtained with Neighborhood function 

profiles approach (top-left), Gaussian Field Propagation (top-right) and 10-NN (bottom-center) 

on metazoa dataset. The diagram shows the average number of bits per gene contained in 

known annotations that were not obtained by the classifier with precision >=0.8, average 

number of bits per gene contained in known annotations obtained with the used methodology 

and the average number of bits per gene of newly obtained information (previously unknown). 

 

 



Table S4. Information accretion (bits per gene) obtained with Neighbourhood function 

profile (NFP), Gaussian Field Propagation (GFP) and 10-NN approach on prokaryotic, 

fungi and metazoa dataset. The results are divided by different ontology namespaces 

(Biological profile – BP, Molecular function – MF and Cellular component – CC). 

Organisms Precision Ontology 
namespace 

Method Known Known and 
predicted 

Newly 
predicted 

 
 
 
 
 
 
 
 
 

Prokaryotes 

 
 
 
 
 

0.5 

 
BP 

10-NN  
11.77 

 

2.81 1.74 

GFP 4.90 4.31 

NFP 6.11 5.53 

 
MF 

10-NN  
9.62 

1.16 0.65 

GFP 2.00 1.67 

NFP 3.12 2.99 

 
CC 

10-NN  
2.28 

0.43 0.36 

GFP 0.96 1.05 

NFP 1.20 1.12 

 
 
 
 

0.8 

 
BP 

10-NN  
11.77 

 

0.69 0.07 

GFP 1.97 0.51 

NFP 3.13 0.75 

 
MF 

10-NN  
9.62 

0.24 0.03 

GFP 0.77 0.16 

NFP 1.21 0.28 

 
CC 

10-NN  
2.28 

0.25 0.05 

GFP 0.41 0.11 

NFP 0.54 0.13 

 
 
 
 
 
 
 
 
 
 

Fungi 

 
 
 
 

0.5 

 
BP 

10-NN  
13.63 

0.40 0.32 

GFP 0.49 0.37 

NFP 0.78 0.68 

 
MF 

10-NN  
7.24 

0.08 0.08 

GFP 0.19 0.18 

NFP 0.44 0.43 

 
CC 

10-NN  
7.04 

0.60 0.31 

GFP 1.29 0.82 

NFP 1.36 0.90 

 
 
 
 
 

0.8 

 
BP 

10-NN  
13.63 

0.01 0.000 

GFP 0.00 0.000 

NFP 0.02 0.003 

 
MF 

10-NN  
7.24 

0.006 0.000 

GFP 0.000 0.000 

NFP 0.009 0.001 

 
CC 

10-NN  
7.04 

0.01 0.000 

GFP 0.39 0.087 

NFP 0.42 0.088 

 
 
 
 
 
 
 
 
 

 
 
 
 

0.5 

 
BP 

10-NN  
8.28 

0.13 0.12 

GFP 0.23 0.21 

NFP 0.33 0.32 

 
MF 

10-NN  
5.65 

0.21 0.15 

GFP 0.25 0.17 

NFP 0.25 0.19 

 
CC 

10-NN  
5.12 

0.66 0.42 

GFP 0.85 0.61 

NFP 0.97 0.74 



Metazoa  
 
 
 

0.8 

 
BP 

10-NN  
8.28 

0.007 0.001 

GFP 0.001 0.000 

NFP 0.012 0.002 

 
MF 

10-NN  
5.65 

0.005 0.000 

GFP 0.011 0.000 

NFP 0.011 0.002 

 
CC 

10-NN  
5.12 

0.000 0.000 

GFP 0.019 0.002 

NFP 0.058 0.011 

 

S3.7 Diversity of predictions  

 

In this section, we provide the results on the number of OG families that obtained at 

least one prediction at precision levels 0.5 and 0.8 for GO functions of different 

generality and for 10-NN, GFP and NFP classifier.  

 
Table S5. Number of OGs receiving at least one prediction on prokaryotic dataset. 

Method Number of OGs with at 
least one predicted GO 

function 

Number of predictions of 
functions with 𝐼𝐶 ∈ < 2,4] 

Number of OGs with at 
least one predicted GO 

function with IC>4 

 Precision: 
0.5 

Precision: 
0.8 

Precision: 
0.5 

Precision: 
0.8 

Precision: 
0.5 

Precision: 
0.8 

10-NN 3475/3475 461/3475 924/3475 187/3475 705/3475 243/3475 

GFP 3475/3475 2007/3475 2176/3475 606/3475 1538/3475 581/3475 

NFP 3475/3475 2536/3475 2390/3475 849/3475 1443/3475 622/3475 

 

 

Table S6. Number of OGs receiving at least one prediction on fungi dataset 

Method Number of OGs with at 
least one predicted GO 

function 

Number of predictions of 

functions with 𝐼𝐶 ∈ <
2,4] 

Number of OGs with at 
least one predicted GO 

function with IC>4 

 Precision: 
0.5 

Precision: 
0.8 

Precision: 
0.5 

Precision: 
0.8 

Precision: 
0.5 

Precision: 
0.8 

10-NN 15404/15741 95/15741 17/15741 0/15741 262/15741 95/15741 

GFP 15716/15741 5227/15741 3/15741 2/15741 0/15741 0/15741 

NFP 15741/15741 4652/15741 1159/15741 129/15741 908/15741 172/15741 

 

 

 

 



Table S7. Number of OGs receiving at least one prediction on metazoa dataset 

Method Number of OGs with at 
least one predicted GO 

function 

Number of predictions of 
functions with 𝐼𝐶 ∈ < 2,4] 

Number of OGs with at 
least one predicted GO 

function with IC>4 

 Precision: 
0.5 

Precision: 
0.8 

Precision: 
0.5 

Precision: 
0.8 

Precision: 
0.5 

Precision: 
0.8 

10-NN 9185/9185 61/9185 417/9185 23/9185 279/9185 50/9185 

GFP 9185/9185 217/9185 1589/9185 8/9185 132/9185 19/9185 

NFP 9185/9185 963/9185 4835/9185 119/9185 247/9185 64/9185 

 

The results provided show that the NFP approach mostly provides more versatile predictions 

than baseline classifiers. 

S3.8 Evaluation on model organisms 

 

In this section, we present the evaluation results of k-NN, Gaussian Field Propagation and 

Neighborhoods function profiles approach on several selected prokaryotic, fungi and metazoa 

model organisms. We show the number of newly predicted genes with a given precision 

threshold and Information Content for each method. 

 

Table S8. Number of predicted annotations (gene-function pairs - #OA), new annotations 
(#NA), and previously non-annotated genes that got at least one annotation (#NPG) on 
different model Prokaryotic, Fungi and Metazoa organisms for k-NN, Gaussian Field 
Propagation and Neighbourhood function profiles  methods. The number of predicted 
annotations is computed for precision thresholds (Pr. tr.) 0.5 and 0.8. The #OA denotes 
the number of annotations present in the dataset.  Counted GO functions have IC>4. 

Prokaryotes 
 

Organism Method Pr. tr. #OA #PA #NA #NPG 

 

 

 

 

 

 

Pseudomonas aeruginosa 

1-NN  

 

0.5 

 

 

31913 

2050 1017 301 

3-NN 5416 1939 380 

10-NN 6188 2646 495 

GFP 15505 8674 1398 

NFP 21227 12165 1351 

1-NN 11 2 2 

3-NN 1536 220 58 



10-NN  

 

0.8 

 

 

31913 

1954 232 50 

GFP 5172 1160 277 

NFP 6504 1537 235 

 

 

 

 

 

 

Escherichia coli 

1-NN  

 

0.5 

 

 

29632 

1725 811 254 

3-NN 4833 1750 363 

10-NN 5629 2614 487 

GFP 13750 7572 1236 

NFP 18912 10559 1277 

1-NN  

 

0.8 

 

 

29632 

11 2 2 

3-NN 1261 171 48 

10-NN 1687 207 45 

GFP 4351 905 218 

NFP 5491 1211 209 

 

 

 

 

 

 

Bacillus subtilis 

1-NN  

 

0.5 

 

 

23428 

1629 765 212 

3-NN 4253 1437 278 

10-NN 4697 1988 361 

GFP 11600 6176 975 

NFP 15263 8079 968 

1-NN  

 

0.8 

 

 

23428 

10 0 0 

3-NN 1139 102 31 

10-NN 1492 152 37 

GFP 3932 772 167 

NFP 4916 1061 158 

 

 

 

 

1-NN  

 

0.5 

 

 

31200 

2059 1066 282 

3-NN 4847 1534 311 

10-NN 5668 2388 487 

GFP 13542 7898 1298 



 

 

Streptomyces coelicolor 

NFP 20052 10470 1339 

1-NN  

 

0.8 

 

 

31200 

14 0 0 

3-NN 1614 138 40 

10-NN 2234 247 48 

GFP 4386 1012 226 

NFP 5620 947 175 

 

 

 

 

 

 

 

S. aureus 

1-NN  

 

0.5 

 

 

18517 

1252 528 136 

3-NN 3237 952 199 

10-NN 3600 1374 247 

GFP 8656 4314 683 

NFP 11027 5386 712 

1-NN  

 

0.8 

 

 

18517 

8 0 0 

3-NN 918 84 21 

10-NN 1373 114 27 

GFP 3143 603 135 

NFP 3535 586 119 
 

Fungi 
 

Organism Method Pr. tr. #OA #PA #NA #NPG 

 

 

 

 

S. pombe  

1-NN  

 

0.5 

 

 

78377 

1 1 1 

3-NN 101 44 22 

10-NN 142 87 29 

GFP 0 0 0 

NFP 464 282 67 

1-NN  

 

0.8 

 

 

78377 

0 0 0 

3-NN 45 0 0 

10-NN 12 0 0 



GFP 0 0 0 

NFP 25 0 0 

 

 

 

 

S. cerevisiae 

1-NN  

 

0.5 

 

 

107013 

4 3 3 

3-NN 106 44 25 

10-NN 139 89 39 

GFP 0 0 0 

NFP 757 552 148 

1-NN  

 

0.8 

 

 

107013 

0 0 0 

3-NN 0 0 0 

10-NN 45 0 0 

GFP 0 0 0 

NFP 71 3 2 

 

 

Aspergillus nidulans 

1-NN  

 

0.5 
 

 

 

242728 

41 12 10 

3-NN 2158 505 136 

10-NN 5273 1817 452 

GFP 0 0 0 

NFP 12870 5683 805 

1-NN  

 

0.8 

 

 

242728 

0 0 0 

3-NN 807 21 11 

10-NN 933 46 20 

GFP 0 0 0 

NFP 2846 342 53 

 

 

 

 

Neurospora crassa 

1-NN  

0.5 

 

91926 

4 3 3 

3-NN 274 151 52 

10-NN 511 302 98 

GFP 0 0 0 

NFP 1113 786 139 



1-NN  

 

0.8 

 

 

91926 

0 0 0 

3-NN 52 1 1 

10-NN 25 3 2 

GFP 0 0 0 

NFP 143 28 4 

 

 

 

 

Cryptococcus neoformans 

1-NN  

 

0.5 

 

 

75076 

1 0 0 

3-NN 58 45 24 

10-NN 200 160 43 

GFP 0 0 0 

NFP 305 224 61 

1-NN  

0.8 

 

75076 

0 0 0 

3-NN 4 1 1 

10-NN 12 0 0 

GFP 0 0 0 

NFP 14 0 0 
 

Metazoa 
 

Organism Method Pr. tr. #OA #PA #NA #NPG 

 

 

 

 

Mus musculus 

1-NN  

 

0.5 

 

 

461620 

0 0 0 

3-NN 1279 900 348 

10-NN 1875 1391 531 

GFP 1233 447 244 

NFP 2101 1060 484 

1-NN  

 

0.8 

 

 

461620 

0 0 0 

3-NN 249 25 14 

10-NN 263 44 27 

GFP 193 18 10 



NFP 453 14 9 

 

 

 

 

D. melanogaster 

1-NN  

 

0.5 

 

 

313360 

0 0 0 

3-NN 1234 561 200 

10-NN 1786 1018 388 

GFP 1514 345 165 

NFP 3639 1534 582 

1-NN  

 

0.8 

 

 

313360 

0 0 0 

3-NN 461 8 5 

10-NN 356 33 16 

GFP 475 10 5 

NFP 994 65 35 

 

 

 

 

Homo sapiens 

1-NN  

 

0.5 

 

 

936678 

0 0 0 

3-NN 2428 1601 686 

10-NN 3771 2655 1088 

GFP 2349 921 484 

NFP 3633 1902 866 

1-NN  

 

0.8 

 

 

936678 

0 0 0 

3-NN 646 57 33 

10-NN 632 55 32 

GFP 269 40 24 

NFP 765 37 25 

 

 

 

 

C. elegans 

1-NN  

 

0.5 

 

 

16614 

0 0 0 

3-NN 23 20 9 

10-NN 45 43 15 

GFP 42 20 11 

NFP 66 34 8 

1-NN 0 0 0 



3-NN 

 

 

0.8 

 

 

16614 

0 0 0 

10-NN 1 1 1 

GFP 19 3 1 

NFP 24 4 2 
 

 

 

Table S9. Number of predicted annotations (gene-function pairs - #OA), new 
annotations (#NA), and previously non-annotated genes that got at least one annotation 
(#NPG) on different model Prokaryotic, Fungi and Metazoa organisms for k-NN, 
Gaussian Field Propagation and Neighbourhood function profiles  methods. The 
number of predicted annotations is computed for precision thresholds (Pr. tr.) 0.5 and 
0.8. The #OA denotes the number of annotations present in the dataset.  Counted GO 
functions have 2<IC≤4. 
 

Prokaryotes 
 

Organism Method Pr. tr. #OA #PA #NA #NPG 

 

 

 

 

 

 

Pseudomonas aeruginosa 

1-NN  

 

0.5 

 

 

41583 

0 0 0 

3-NN 3332 1324 453 

10-NN 4190 1736 684 

GFP 14907 7957 1926 

NFP 38596 21007 2294 

1-NN  

 

0.8 

 

 

41583 

0 0 0 

3-NN 284 35 24 

10-NN 1128 149 57 

GFP 3802 929 289 

NFP 9042 2323 419 

 

 

 

 

1-NN  

 

0.5 

 

 

35852 

0 0 0 

3-NN 2941 1185 411 

10-NN 3876 1748 622 

GFP 12944 6970 1692 



 

 

Escherichia coli 

NFP 32809 18165 2048 

1-NN  

 

0.8 

 

 

35852 

0 0 0 

3-NN 254 29 23 

10-NN 969 141 53 

GFP 3031 694 232 

NFP 7491 1942 367 

 

 

 

 

 

 

Bacillus subtilis 

1-NN  

 

0.5 

 

 

29449 

0 0 0 

3-NN 2363 1007 324 

10-NN 3046 1288 488 

GFP 10285 5378 1276 

NFP 26911 13999 1573 

1-NN  

 

0.8 

 

 

29449 

0 0 0 

3-NN 167 20 14 

10-NN 826 108 46 

GFP 2738 585 179 

NFP 6464 1824 287 

 

 

 

 

 

 

Streptomyces coelicolor 

1-NN  

 

0.5 

 

 

44119 

0 0 0 

3-NN 3280 1392 481 

10-NN 4590 2015 703 

GFP 14914 8363 1827 

NFP 41723 20624 2226 

1-NN  

 

0.8 

 

 

44119 

0 0 0 

3-NN 339 25 18 

10-NN 1322 187 66 

GFP 3577 954 263 

NFP 9106 1558 382 

1-NN 0 0 0 



 

 

 

 

 

 

 

S. aureus 

3-NN 

 

 

0.5 

 

 

21553 

1861 639 223 

10-NN 2497 941 363 

GFP 8221 4029 904 

NFP 19105 9431 1125 

1-NN  

 

0.8 

 

 

21553 

0 0 0 

3-NN 154 18 12 

10-NN 755 89 34 

GFP 2319 494 151 

NFP 4413 881 184 
 

Fungi 
 

Organism Method Pr. tr. #OA #PA #NA #NPG 

 

 

 

 

S. pombe  

1-NN  

 

0.5 

 

 

69483 

0 0 0 

3-NN 4 2 2 

10-NN 27 11 6 

GFP 0 0 0 

NFP 550 265 130 

1-NN  

 

0.8 

 

 

69483 

0 0 0 

3-NN 0 0 0 

10-NN 5 1 1 

GFP 0 0 0 

NFP 9 6 2 

 

 

 

 

S. cerevisiae 

1-NN  

 

0.5 

 

 

92501 

0 0 0 

3-NN 9 4 4 

10-NN 35 20 15 

GFP 0 0 0 

NFP 1307 637 216 



1-NN  

 

0.8 

 

 

92501 

0 0 0 

3-NN 0 0 0 

10-NN 3 1 1 

GFP 0 0 0 

NFP 14 4 2 

 

 

Aspergillus nidulans 

1-NN  

 

0.5 
 

 

 

223748 

0 0 0 

3-NN 14 4 4 

10-NN 163 45 25 

GFP 5 1 1 

NFP 6422 3474 841 

1-NN  

 

0.8 

 

 

223748 

0 0 0 

3-NN 0 0 0 

10-NN 27 2 2 

GFP 4 0 0 

NFP 587 132 78 

 

 

 

 

Neurospora crassa 

1-NN  

0.5 

 

89349 

0 0 0 

3-NN 6 3 3 

10-NN 34 17 10 

GFP 0 0 0 

NFP 711 375 164 

1-NN  

 

0.8 

 

 

89349 

0 0 0 

3-NN 0 0 0 

10-NN 3 1 1 

GFP 0 0 0 

NFP 10 3 1 

 

 
1-NN 0 0 0 

3-NN 6 4 4 



 

 

Cryptococcus neoformans 

10-NN  

 

0.5 

 

 

70685 

24 11 6 

GFP 0 0 0 

NFP 595 307 140 

1-NN  

0.8 

 

70685 

0 0 0 

3-NN 0 0 0 

10-NN 5 1 1 

GFP 0 0 0 

NFP 11 6 2 
 

 
 

 
Metazoa 

 

Organism Method Pr. tr. #OA #PA #NA #NPG 

 

 

 

 

Mus 
musculus 

1-NN  

 

0.5 

 

 

543059 

0 0 0 

3-NN 978 493 60 

10-NN 2545 1450 493 

GFP 9873 5141 3797 

NFP 30558 16158 9860 

1-NN  

 

0.8 

 

 

543059 

0 0 0 

3-NN 0 0 0 

10-NN 258 49 16 

GFP 19 0 0 

NFP 1089 135 42 

 

 

 

 

1-NN  

 

0.5 

 

 

334632 

0 0 0 

3-NN 640 236 35 

10-NN 3686 2655 463 

GFP 6260 2982 2205 



D. 
melanogaster 

NFP 21579 10834 6022 

1-NN  

 

0.8 

 

 

334632 

0 0 0 

3-NN 0 0 0 

10-NN 174 23 8 

GFP 29 0 0 

NFP 2129 332 40 

 

 

 

 

Homo 
sapiens 

1-NN  

 

0.5 

 

 

1081545 

0 0 0 

3-NN 1688 611 108 

10-NN 4662 2555 994 

GFP 18854 9767 7045 

NFP 58041 30383 19159 

1-NN  

 

0.8 

 

 

1081545 

0 0 0 

3-NN 0 0 0 

10-NN 443 44 17 

GFP 44 0 0 

NFP 1959 311 78 

 

 

 

 

C. elegans 

1-NN  

 

0.5 

 

 

18579 

0 0 0 

3-NN 32 31 3 

10-NN 67 51 24 

GFP 422 186 125 

NFP 1069 479 324 

1-NN  

 

0.8 

 

 

18579 

0 0 0 

3-NN 0 0 0 

10-NN 0 0 0 

GFP 1 0 0 

NFP 5 0 0 
 

 

 



S3.9 Evaluation on CAFA 2 challenge data 

 
We have evaluated and compared the performance of Neighborhood function profiles approach 

with baseline (k-NN) method on a Cafa 2 challenge data (https://biofunctionprediction.org/cafa/). 

The Ontology version we used to perform our experiments (from January 2014.) does not 

contain annotations being tested in Cafa 2. Thus, we use out of bag predictions (obtained by 

Random Forest trained on gene functional Neighborhood features) and leave one out 

predictions from the k-NN approach obtained on our GO function set directly to evaluate 

performance on Cafa 2 gene evaluation set. Ontology version used (from December 2016.) to 

obtain predictions on Fungi and Metazoa data contained the annotations from Cafa 2, so we 

first removed all OGs associated to genes contained in the Cafa 2 challenge, then created gene 

functional Neighborhood and location Neighborhood features and trained Random forest and k-

NN models.  All removed OGs were placed in a test set on which obtained models were 

evaluated. Since genes can be associated to multiple OGs, and our models predict functions for 

a set of selected OGs, we use average score obtained on all associated OGs as classifier score 

for a given gene. AUC and AUPRC measures have been computed on the obtained scores to 

evaluate these models on Cafa 2 challenge data.  

 

The obtained results (see Figures S36.) show that Neighborhood function profiles approach 

(average AUC : 0.78, AUPRC: 0.207 - prokaryotes, AUC: 0.67, AUPRC: 0.065 - fungi, AUC: 

0.72, AUPRC: 0.025 - metazoa) significantly outperforms the baseline method (average AUC : 

0.62, AUPRC: 0.13 - prokaryotes, AUC: 0.52, AUPRC: 0.055 - fungi, AUC: 0.53, AUPRC: 

0.0195 - metazoa). The corresponding p-values, as computed by Mann-Whitney U test are 

(𝑝𝐴𝑈𝐶  <  2.2 ⋅ 10−16, 𝑝𝐴𝑈𝑃𝑅𝐶  <  2.2 ⋅ 10−16 - prokaryotes, 𝑝𝐴𝑈𝐶  <  2.2 ⋅ 10−16, 𝑝𝐴𝑈𝑃𝑅𝐶  =  5.28 ⋅

10−16 - fungi, 𝑝𝐴𝑈𝐶  <  2.2 ⋅ 10−16, 𝑝𝐴𝑈𝑃𝑅𝐶  <  2.2 ⋅ 10−16  - metazoa). It can also be shown that 

the AUC scores obtained on Cafa validation data have significant Pearson and Spearman 

[PearsonCorr,Spearman] correlation to obtained out of bag and leave one out validation scores 

obtained on the initial datasets (  𝑟 =  0.38 , 𝑝𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐺𝐹𝑁  <  2.2 ⋅ 10−16, 𝜌 =

 0.37,  𝑝𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛,𝐺𝐹𝑁  <  2.2 ⋅ 10−16,   

𝑟 =  0.39 , 𝑝𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  <  2.2 ⋅ 10−16, 𝜌 =  0.38,  𝑝𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  <  2.2 ⋅ 10−16,  - 

prokaryotes, 𝑟 =  0.09 , 𝑝𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐺𝐹𝑁  =  0.002, 𝜌 =  0.095,  𝑝𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛,𝐺𝐹𝑁  =  0.001,   

𝑟 =  0.15 , 𝑝𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  =  2.3 ⋅ 10−7, 𝜌 =  0.02,  𝑝𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  =  0.43,  - fungi, 

𝑟 =  0.093 , 𝑝𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐺𝐹𝑁  =  4.5 ⋅ 10−5, 𝜌 =  0.12,  𝑝𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛,𝐺𝐹𝑁  =  2.76 ⋅ 10−7,   

𝑟 =  0.196 , 𝑝𝑃𝑒𝑎𝑟𝑠𝑜𝑛,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  <  2.2 ⋅ 10−16, 𝜌 =  0.25,  𝑝𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  <  2.2 ⋅ 10−16,   - 

metazoa).   

 

See also Figure S37. 

  



 

 
a) Prokaryotic organisms 

 

 
b) Fungi dataset 

 

 
c) Metazoa dataset 

Figure S36. Comparative performance results of 10-NN and Neighborhood function profiles on 

the CAFA2 gene validation sets for Prokaryotic a), Fungi b) and Metazoa c) organisms.  

 

 



 
Figure S37. Correlation between out-of-bag and Caffa set for the NFP approach computed on 

Prokaryotic dataset (top), Fungi dataset (middle) and Metazoa dataset (bottom).  

 

 



S3.10 Gene functional annotations from three different GO namespaces 

complement each other 

Throughout our work, we use a set of 1048 GO functions from all three namespaces (Biological 

process - BP, Molecular function - MF and Cellular component - CC) to train our model for gene 

function prediction on prokaryotic organisms. In this section, we explore the complementarity of 

functional annotations contained in these namespaces. The main goal is to explore if adding 

(non-circular) annotations from two namespaces to the annotations of one selected namespace 

increases prediction performance of Neighborhood function profiles approach. In order to fully 

understand the influence of (non-circular) annotations, from different namespaces, to gene 

function prediction performance, we compare the obtained results with the result of the NFP 

approach, on a dataset containing annotations of the selected namespace extended with 

randomly generated features. We generate equal number of random features as the number of 

non-circular annotations from remaining two namespaces used in the original experiment. This 

experimental setup demonstrate in what amount (non-circular) annotations from other 

namespaces complement the information contained in the target namespace and what is the 

benefit of using this information for gene function prediction in the NFP approach. The level of 

circularity of an annotation is measured with Jaccard index [Jaccard]. We test the performance 

gain with different Jaccard index thresholds: 0.0, 0.1, 0.6 and 1.0. The Jaccard index 0.0 

disallows adding any GO annotation from complementing namespaces such that there exists 

any annotation from selected namespace sharing at least one OG. On the other hand, Jaccard 

index 1.0 allows all GO annotations from complementing namespaces to be used in model 

training. We compute the Mann - Whitney U test of statistical significance of difference of the 

mean between two sets of predictions (containing annotations from selected namespace and 

complementary annotations vs containing annotations from selected namespace and randomly 

generated annotations in the same range) and show comparative violin plots.  

 

 
a) Biological process 



 

b) Molecular function 

 

c) Cellular component 

Figure S38. Neighborhood function profiles performance measured with AUC and AUPRC 

measures for different values of Jaccard index threshold. 

 

We found that the average AUPRC score increased from 0.296 to 0.298 for BP (when including 

non-overlapping MF and CC terms that occur in neighborhoods), 0.191 to 0.213 for MF (when 

including BP and CC) and 0.400 to 0.461 for CC (including BP and MF). This further supports 

that a variety of unrelated gene functions tend to be organized into common genomic 

neighborhoods. Results presented in Figure S38. show that classifier performance mostly 

increases with the increase of the Jaccard index threshold. This is to be expected since more 

permissive threshold allows adding features derived from more complementing functions. At the 

same time, replacing these features with randomly generated features degrades the classifier 

performance (red line). This demonstrates the usefulness of using complementing namespaces 

in gene function prediction with Neighborhood function profiles method.  

The difference in the mean of AUC and AUPRC across functions when predicted using 

Biological process features and the complementing features compared to Biological process 

features and  randomized features (equal number to the complementing features) is not 

significant (according to one-sided Mann-Whitney U test) for very strict Jaccard index level (0.0 

and 0.1), however mean of AUPRC scores is statistically significantly higher (p = 0.023) when 

using complementing features for the level 0.6 and statistically significantly higher for both the 

AUC (p = 0.009) and AUPRC (p = 0.0102) for Jaccard threshold 1.0. 



The difference in the mean of AUC and AUPRC across functions when predicted using 

Molecular function features and the complementing features compared to Molecular function 

features and  randomized features (equal number to the complementing features) is not 

significant (according to one-sided Mann-Whitney U test) for very strict Jaccard index level (0.0), 

however mean of AUC scores (p = 0.024 ) and the mean of AUPRC scores  (p = 0.029) is 

statistically significantly higher when using complementing features for the Jaccard threshold 

level 0.1, AUC (p = 5 ⋅ 10−4), AUPRC (p =2.5 ⋅ 10−4) for threshold 0.6 and AUC (p = 8.2 ⋅ 10−6 ), 

AUPRC (p = 5.5 ⋅ 10−5) for threshold 1.0.  

The difference in the mean of AUC and AUPRC across functions when predicted using Cellular 

component features and the complementing features compared to Cellular component features 

and  randomized features (equal number to the complementing features) is not significant 

(according to one-sided Mann-Whitney U test) for very strict Jaccard index level (0.0), however 

mean of AUC scores (p = 0.023 ) and the mean of AUPRC scores  (p = 0.026) is statistically 

significantly higher when using complementing features for the Jaccard threshold level 0.1, AUC 

(p = 0.035), AUPRC (p = 0.004) for threshold 0.6 and AUC (p = 0.0105 ), AUPRC (p = 0.0053) 

for threshold 1.0.  

As can be seen, integrating all three GO sub-ontologies in a common predictor can provide 

increases to accuracy. Included GO terms from all three sub-ontologies (Biological Process 

[BP], Molecular Function [MF] and Cellular Component [CC]) into global functional profiles of 

gene neighborhoods, therefore includes a variety of semantically unrelated GO terms. Higher 

level of allowed redundancy significantly increases the performance gain.  

S3.11 Neighborhood function profiles improve prediction of conditional 

growth defects in different E. coli strains 

The aim of this experiment was to improve the prediction of conditional growth defects for 696 

different strains of E.Coli bacteria. Genomic data, disruption scores and conditional scores used 

to create datasets were obtained from [Galardini]. In addition to conditional scores, provided by 

the authors of [Galardini] and used to predict conditional growth defects, we created three 

additional datasets: a) functional gene Neighborhoods for each E.Coli strain. Features in this 

datasets are GO function - OG pairs, thus a feature vector contains frequency counts of GO 

function occurrence in the Neighborhood of each OG contained in the E.Coli strain. This 

resulted in large number of features (numOG*numGO), which were reduced by removing all 

pairs with 0 frequency in all strains. As a result, a dataset with 71540 features was obtained.  b) 

We apply PCA [PearsonK] on the dataset obtained in a) and obtain 228 components, c) we 

combine the conditional score and PCA features in the combined dataset.  

As a baseline predictor, we use conditional scores computed and used in [Galardini]. We notice 

that using Random Forest on datasets a) and b) does not yield better performance compared to 

the baseline predictor. Using Random Forest directly on the conditional scores dataset does not 

significantly increase the AUC score compared to baseline predictor (p=0.276 using one-sided 

Wilcoxon signed-rank test), however it significantly increases performance (measured using 

DeLong test [DeLong]) for 40 conditional growth defects (FDR<0.2) and has significantly worse 

performance for 10 conditional growth defects (FDR<0.2). Using Random Forest algorithm on 

dataset c) which combines conditional scores and PCA components significantly increases 

prediction performance (as measured by the AUC score, p=0.03 as computed by the one-sided 



Wilcoxon signed-rank test). Further analyses using DeLong test [DeLong] for ROC curve 

comparison revealed that 62 conditional growth defects were significantly more accurately 

predicted by the Random Forest classifier using dataset c) than the baseline predictor 

(FDR<0.2) whereas 9 conditional growth defects had significantly worse prediction using 

Random Forest on dataset c) than baseline predictor (FDR < 0.2).  

We noticed complementarity in predictions between the baseline predictor and the Random 

Forest applied to dataset c), thus we created an Ensemble predictor that predicted conditional 

growth defects as follows: 𝑃𝑟𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑑𝑖) = (𝑤1 ⋅ 𝑃𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑑𝑖)  +  𝑤2 ⋅  𝑃𝑟𝑅𝐹3(𝑑𝑖)), 𝑤1 + 𝑤2  =

 1. 𝑑𝑖are normalized scores obtained as follows: 𝑑𝑖 =  𝑐𝑖/(𝑚𝑎𝑥 𝑐), where  𝑐𝑖 denotes the 

corresponding score of the original classifier.  

It shows that using 𝑤1  =  0.1,  𝑤2 = 0.9 significantly improves accuracy (as measured by AUC) 

of both the Baseline predictor and PCANFP predictor (see Figure S39). A good tradeoff for both 

AUC and AUPRC scores is achieved with these weights (see Figures S41, S42). 

Ensemble classifier significantly improves predictions of conditional growth defects compared to 

the baseline predictor (p=1.0 ⋅ 10−11), the BaselineRF (p=1.69 ⋅ 10−15), and compared to the 

PCANFP predictor (p=1.56 ⋅ 10−9), as measured by the one-sided Wilcox singed-rank test. It 

predicts 62 defects significantly better than baseline predictor (FDR<0.2) and 10 defects 

significantly worse than the baseline predictor (FDR<0.2). 

Distributions of AUC scores obtained by the baseline predictor, the Random Forest applied to 

conditional scores, Random Forest applied to dataset b) and the ensemble predictor are shown 

in Figures S39 and S40.  

Figure S39. Distribution of AUC scores for the baseline classifier, Random Forest classifier 

applied to conditional scores, Random Forest classifier applied to a dataset containing PCA 

components as features and the ensemble classifier. 



 

Figure S40. Distribution of AUPRC scores for the baseline classifier, Random Forest classifier 

applied to conditional scores, Random Forest classifier applied to a dataset containing PCA 

components as features and the ensemble classifier. 

 

Figure S41. Distribution of AUC scores for different values of parameter 𝑤1, 𝑤2 in ensemble 

classifier. 



 

Figure S42.  Distribution of AUC scores for different values of parameter 𝑤1, 𝑤2 in ensemble 

classifier. 

 

Ensemble metaparameters 𝑤1, 𝑤2 were chosen based on the results demonstrated in Figures 

S41 and S42. 

Area under the ROC curve achieved by the Baseline method and the ensemble method for the 

top phenotypes with the smallest corrected p-value (as measured by the De Long test and 

corrected for false discovery rate) of difference in AUC between approaches can be seen in 

Figure S43.  

 

 



 

Figure S43. Area under the ROC curve achieved by the Baseline method (left) and the 

ensemble method (right) for the top phenotypes with the smallest corrected p-value (as 

measured by the De Long test and corrected for false discovery rate) of difference in AUC 

between approaches. 

 

S3.12 Removing information about Operons and Enrichments significantly 

reduces NFP performance 

 

We show that the performance of NFP model significantly decreases after removing information 

about operons in prokaryotes (which is expected). However, it further significantly decreases 

when removing information about enrichments. For each OG, we replace the feature (GO 

function) that is enriched with at least one GO on the target side of this OG with a randomized 



version of this feature (values are generated randomly from uniform distribution in the interval 

[minValueatx, maxValueatx]).  

 

 

 
Figure S44. The decrease in AUC and AURPC in NFP method caused by excluding operons in 

feature computation and randomizing features that represent functions that are significantly 

enriched with at least one other GO contained in the set of target functions for some OG. 

As it can be seen from Figure S44., the NFP model performance significantly decreases (as 

measured by one – sided Wilcoxon signed-rank test) when information about operons in 

prokaryotic organisms is omitted during feature construction. Further on, when features 

representing functions that have significant enrichment with at least one target variable are 

replaced with randomized attributes, further significant decrease in performance is detected. 



S4. Associating functional enrichments with biological phenomena 

S4.1 Enrichments in different subgroups of Prokaryotes  

 
In this section, we analyze if the number of highly enriched semantically distant pairs of GO 

functions significantly differs between different subgroups of prokaryotes. If this was the case, 

our measurement could indicate high occurrence of some specific subgroup of prokaryotes. 

Thus, we divide the set of prokaryotes to the free-living bacteria and to the host-associated 

bacteria (pathogenic in mammals). We obtained 404 prokaryotes associated with mammalian 

host, 1304 free living prokaryotes and 1023 other prokaryotes (14.8% vs 47.7% vs 37.5%).  

 

Figure S45. Comparative LOR distribution obtained on the two subsets of prokaryotes (free-

living and pathogenic in mammals). Original LOR distribution for each group is compared to the 

distribution obtained on the corresponding randomized data. The Kolmogorov-Smirnov test 

shows the difference between the original and the randomized distribution is significant for both 

subsets of prokaryotes. 

 

It can be seen from Figure S5 that both subgroups of prokaryotes have significantly different 

distribution than obtained on randomized data and that both distributions have much higher 

spread than the corresponding distributions obtained on the randomized dataset.  

 

S4.2 Relating functional enrichments with gene co-expression 

 
To assess to what degree can the enrichment of semantically distant functions be explained by 

gene co-expression, we computed the pairwise gene co-expressions on the E.Coli bacteria 

(using the gene expression data obtained from the Colombos database [Morreto]). The results 

are presented in Table S10. 

 

Table S10. Average gene co-expression for genes associated to pairs of GO functions 
such that these pairs are: a) significantly enriched with LOR ≥ 2 and b) inisgnificantly 

enriched with LOR  [-0.5,0.5] interval. The results are presented for 4 subsets of GO 
pairs of functions, divided by Resnik similarity and are rounded to four digits. 

Average gene co-expression for genes associated to pairs of GO functions such that: 



Resnik similarity interval Significant enrichment 

𝑳𝑶𝑹(𝑮𝑶𝒙 , 𝑮𝑶𝒚) ≥ 𝟐 

Insignificant enrichment 

𝑳𝑶𝑹(𝑮𝑶𝒙 , 𝑮𝑶𝒚)  [−𝟎. 𝟓, 𝟎. 𝟓]  

<2 0.0258 0.0085 

[2,4> 0.0396 0.0328 

[4,6> 0.0927 0.0611 

≥6 0.2228 0.0690 

 

As can be seen from Table S10, the average gene co-expression systematically increases with 

the increase of semantic similarity between pairs of GO terms (regardless of significance and 

intensity of enrichment). However, the average co-expression is up to 3.3 times higher for the 

significantly enriched GO pairs (𝐿𝑂𝑅(𝐺𝑂𝑥  , 𝐺𝑂𝑦) ≥ 2) than for the insignificantly enriched GO 

pairs (𝐿𝑂𝑅(𝐺𝑂𝑥  , 𝐺𝑂𝑦)  [−0.5,0.5] ). 
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